Определение скорости звука в воздухе методом стоячей волны

1. Цель работыИзучение стоячей звуковой волны и определение с ее помощью фазовой скорости звука в воздухе.

2. Теория работыЗвуковыми волнами называют процесс распространения колебаний молекул упругой среды. Различают два типа звуковых волн - продольные и поперечные. В поперечной волне направление колебаний молекул перпендикулярно направлению распространения волны. В продольной волне направление колебаний частиц параллельно направлению распространения волны. В жидкостях и газах из-за слабых межмолекулярных связей возможны только продольные волны. В твердых телах возможны и продольные и поперечные волны.

Все звуковые волны делят на три основных частотных диапазона: инфразвук (n<20 Гц); звук (20Гц < n < 20000 Гц); ультразвук

(n > 20 кГц). Скорость распространения звука в газах определяется формулой:

, (1)

где g = Cp/Cv - отношение теплоемкостей газа при постоянном давлении и при постоянном объеме;

R = 8.31 Дж/моль*К - универсальная газовая постоянная;

Т = t0 С +273 - абсолютная температура; m - молярная масса газа. Для воздуха m = 0.029 кг/моль. Величину g можно найти по формуле:

g = (i+2)/i , (2)

где i-число степеней свободы молекул газа (число координат, которыми задается положение молекулы в пространстве). Для одноатомных i=3; для 2-х атомных i = 5; для трех- и многоатомных i=6.

Упругая волна называется гармонической, если соответствующие ей колебание частиц среды являются гармоническими.

Расстояние, на которое распространяется определенная фаза колебаний за один период, называется длиной волны. Если v - фазовая скорость, то согласно данному определению:

l = v-T, (3)

где Т – период колебания, то есть – время одного колебания.

Уравнение, которое позволяет найти смещение колеблющейся молекулы по параметрам волны и расстоянию X до генератора называют уравнением волны. Рассмотрим распространение волны вдоль оси X (рис. 1), созданной генератором, находящимся в точке О.

Пусть в точке О совершаются колебания:

y = Asin wt, (4)

где y – смещение молекулы от положения равновесия; А – амплитуда колебаний, то есть – наибольшее смещение от положения равновесия;

w – циклическая частота, характеризующая изменение фазы волны j=w- t за 1с.

Рис. 1.

В точке с координатой Х тоже возникнут колебания, но спустя время Х/v, необходимое, чтобы волна дошла до точки Х, распространяясь со скоростью v вдоль оси Х:

y = Asin w(t-Х/v) (5)

Уравнение (5) и есть уравнение бегущей (вдоль оси Х) волны. Учитывая, что

w = 2p/T (6)

И (5) можно представить в виде:

y = Asin [2pt/T-2pХ/(vT)],или, учитывая (3),

y=Asin(2pt/T-2pХ/l). (7)

Если волна распространяется в направлении обратном оси Х, то в (5) у скорости надо взять знак "-"и уравнение, так называемой обратной волны, имеет вид:

y=Asin w(t+Х/v) или

y=Asin(2pt/T+2pХ /l). (8)

Если в среде распространяются несколько волн, то они распространяются так, как будто другие волны отсутствуют. Этот факт называют принципом суперпозиции.

При этом, результирующая смещения частицы среды в любой момент времени равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов.

Согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов связывают с понятием когерентности. Волны называются когерентными, если разность их фаз остается постоянной во времени. Очевидно, что когерентными могут быть лишь волны, имеющие одинаковую частоту. При наложении в пространстве двух когерентных волн в разных его точках, получается усиление или ослабление результирующей волны в зависимости от соотношения между фазами этих волн. Это явление называется интерференцией волн.

Особым случаем интерференции являются стоячие волны – это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

Для вывода уравнения стоячей волны предположим, что две плоские волны распространяются навстречу друг другу вдоль оси х в среде без затухания, причем обе волны характеризуются одинаковыми амплитудами и частотами.

Тогда уравнения прямой и обратной волны будут иметь вид (9):

Сложив эти уравнения, получим уравнение стоячей волны:

y = y1 + y2 = A-sin [w(t-x/v)] + A-sin [w(t+x/v)] = A{sin wt-cos wx/v-

-cos wt-sin wx/v + sin wt-cos wx/v + cos wt-sin wx/v} = 2A-cos wx/v-sin wt.

Учитывая, что w=2-p/Т, получим:

y = 2A-cos 2px/l-sin 2pt/T. (10)

Амплитудой стоячей волны называется величина:

Aст = 2A cos 2px/l . (11)

Из уравнения стоячей волны (10) вытекает, что в каждой точке этой волны происходят колебания той же частоты w с амплитудой

Aст = 2A cos 2px/l, завсящей от координаты Х, рассматриваемой точки.

загрузка...

В точках среды, где

2px/l = ± mp, (m = 0,1,2…) (12)

амплитуда колебаний достегает максимального значения, равного 2-А.

В точках среды, где

2px/l = ± (m+0,5)p, (m = 0,1,2…) (13)

амплитуда колебаний обращается в нуль. Точки, в которых амплитуда колебаний максимальна (Аст = 2-А), называются пучностями стоячей волны, а точки, в которых амплитуда колебаний равна нулю (Аст = 0), называются узлами стоячей волны.

Из (12) и (13), получим соответственно координаты пучностей и узлов:

xn = ± ml/2 (14)

xy = ± (m+0,5) l/2, (m = 0, 1, 2,…) (15)

Из формул (14), (15) следует, что расстояние между двумя соседними пучностями и двумя соседними узлами одинаковы и равны l/2.

В отличие от бегущей волны, все точки которой совершают колебания с одинаковой амплитудой, но с запаздыванием по фазе, все точки стоячей волны между двумя узлами колеблются с разными амплитудами, но с одинаковыми фазами.

Образование стоячих волн наблюдается при интерференции бегущей и отраженной волн. Будет на границе отражения узел или пучность, зависит от соотношения плотностей сред. Если среда, от которой происходит отражение, менее плотная, то в месте отражения возникает пучность (рис. 2а), если более плотная – узел (рис. 2б).

Образование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний с противоположными фазами, в результате чего получается узел.

Стоячая волна энергию не переносит, так как падающая и отраженная волна одинаковой амплитуды несут одинаковую энергию в противоположных направлениях.

Из (рис. 2.) видно, что расстояние DХ между соседними узлами или соседними пучностями составляет l/2 и скорость звука (11) может быть выражена формулой:

v = 2DХn . (16)

Рис. 3.




Ответить

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Вы можете использовать HTML- теги и атрибуты:

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

+ 13 = 19